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Abstract. We discuss the convergence of a decomposition branch-and-bound algorithm using Lag-
rangian duality for partly convex programs in the general form. It is shown that this decomposition
algorithm has all convergence properties as any known branch-and-bound algorithm in global op-
timization under usual assumptions. Thus, some strict assumptions discussed in the literature are
avoidable.
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1. Introduction

For the implementation of branch and bound algorithms in global optimization,
the Lagrangian duality can serve as an efficient tool. Partly convex programming
problems belong to the class of nonconvex optimization problems, for which the
Lagrangian duality bound method can be successfully applied. In Ben-Tal et al
(1994), Duer and Horst (1997), Duer (1999), Duer et al. (2000), Thoai (1997,
2000), branch and bound algorithms for some special problems of this class are
presented, in which Lagrangian dual problems can be formulated equivalently as
ordinary linear programs, and the resulting bounds are shown to be at least as
good as the bounds computed by using the classical convexification techniques
for nonconvex problems. Different kinds of assumptions are made for proving
convergence properties of these algorithms.

In this article, we discuss the convergence of a decomposition algorithm using
Lagrangian duality for partly convex programs in the general form. It is shown that
this decomposition algorithm has all convergence properties as any known branch
and bound algorithm in global optimization under the usual assumptions. Thus,
some strict assumptions discussed in the above-mentioned papers are avoidable.

Preliminaries on partly convex programming problems and a decomposition
branch and bound algorithm are given in the next section. The main results on the
convergence of the algorithm is disccused in Section 3. The last section contains
some conclusions.
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2. Preliminaries

Let X and Y be convex subsets of IRn and IRp, respectively. A function f : X ×
Y → IR is called partly convex if the function f (x, ·) is convex on Y for each
x ∈ X. A partly convex program can be formulated as follows:

inf F(x, y)

s.t. Gi(x, y) � 0 (i = 1, · · · ,m)

x ∈ X, y ∈ Y,

(P)

where X and Y are closed convex subsets of X and Y , respectively, and F and Gi

(i = 1, · · · ,m) are partly convex functions defined on X ×Y . We denote by Z the
feasible set of Problem (P), i.e.,

Z = {(x, y) : Gi(x, y) � 0 (i = 1, · · · ,m), x ∈ X, y ∈ Y }. (1)

Throughout this paper we assume that in Problem (P), the sets X and Y are
compact, F(x, y) > −∞ for x ∈ X, y ∈ Y , and that there exists an optimal
solution whenever the feasible set Z defined in (1) is nonempty.

To apply a decomposition branch and bound algorithm for solving Problem
(P), we assume that one can construct a simple compact convex set S0 such that
X ⊃ S0 ⊃ X, (e.g., S0 is a simplex or a rectangle). The algorithm can be briefly
described as follow.

ALGORITHM. Start with S0. Compute a lowerbound µ0 = µ(S0) and an upper
bound γ0 for the optimal value of the problem

inf{F(x, y) : Gi(x, y) � 0 (i = 1, · · · ,m), x ∈ S0, y ∈ Y }. (2)

(γ0 = F(x0, y0) if some feasible Solution (x0, y0) ∈ Z is found, otherwise,
γ0 = +∞). At Iteration k � 0, if +∞ > µk � γk or µk = +∞, then stop,
(in the first case, (xk, yk) with F(xk, yk) = γk is an optimal solution, in the second
case, Problem (P) has no feasible solution). Otherwise, divide Sk into finitely many
convex sets Sk

1 , . . . , S
k
r satisfying

⋃r
i=1 S

k
i = Sk and Si ∩ Sj = ∅ for i �= j , (the

sets Sk and Sk
i are called ‘partition sets’). Compute for each partition set a lower

bound and an upper bound. Update the lower bound µk by choosing the minimum
of lower bounds of all existing partition sets, and update the upper bound γk by
using feasible points found so far. Delete all partition sets S such that µ(S) � γk.
If not all partition sets are deleted, let Sk+1 be a partition set with the minimum
lower bound. Go to Iteration k + 1.

For each partition set S generated throughout the algorithm, a lower bound µ(S)

is computed by solving the Lagrangian dual problem of Problem (2) according to
S, i.e.,

µ(S) = sup
λ�0

inf{F(x, y) +
m∑

i=1

Gi(x, y)λi : x ∈ S, y ∈ Y }. (3)
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In the case that the algorithm does not terminate after a finite number of itera-
tions, it generates at least one infinite ‘decreasing’ sequence {Sq} of convex sets,
i.e., Sq+1 ⊂ Sq ∀ q. For this case, the convergence of the algorithm is discussed in
the next section.

3. Convergence of the algorithm

We begin the establishment of the convergence of the algorithm by showing some
useful properties of the Lagrangian duality bound computed in (3).

LEMMA 1. Let S, R be two partition sets satisfying S ⊇ R. Then
(i) µ(S) � µ(R);
(ii) If there exists λ0 � 0 such that

∑m
i=1 Gi(x, y)λ

0
i > 0 for all x ∈ S, y ∈ Y ,

then µ(S) = +∞.

Proof. (i) follows immediately from the definition of µ(S). To show (ii), let
� = {λ ∈ IRm : λ = kλ0, k � 0}. Then we have

µ(S) = sup
λ�0

inf{F(x, y) +
m∑

i=1

Gi(x, y)λi : x ∈ S, y ∈ Y }

� sup
λ∈�

inf{F(x, y) +
m∑

i=1

Gi(x, y)λi : x ∈ S, y ∈ Y }

= sup
λ∈�

inf{F(x, y) + k

m∑

i=1

Gi(x, y)λ
0
i : x ∈ S, y ∈ Y } = +∞.

The last equation follows from the assumption that F(x, y) > −∞ for x ∈ S, y ∈
Y , and the assumption in (ii) by letting k → +∞. �
REMARK 1. The condition

∑m
i=1 Gi(x, y)λ

0
i > 0 for x ∈ S, y ∈ Y , is fulfilled

if, e.g., there is an index j such that

{(x, y) : Gj(x, y) � 0, x ∈ S, y ∈ Y } = ∅.
In this case, one can choose λ0 = (0, · · · , 0, λ0

j , 0, · · · , 0) with λ0
j = 1.

Next, let us recall the concept of ‘upper semicontinuity’ of a point-to-set map-
ping (see e.g., Bank et al., 1983).

DEFINITION 1. Let A ⊂ IRn. A point-to-set mapping M : A → IRm is called
‘upper semicontinuous according to Berg (u.s.c.B.)’ at a point x∗ ∈ A, if for each
open set � containing M(x∗) there exists a δ = δ(�) > 0 such that M(x) ⊂ �

∀x ∈ U(x∗, δ) ∩ A, where U(x∗, δ) is an open ball with radius δ around x∗.
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LEMMA 2. Assume that, in Problem (P), the functions Gi (i = 1, · · · ,m) are
lower semicontinuous on S0 ×Y (recall that S0 is a compact convex set containing
X). Then the point-to-set mapping M : S0 → IRm defined by

M(x) = {λ ∈ IRm : Gi(x, y) � λi � ti (i = 1, · · · ,m) for some y ∈ Y },
(4)

where, for each i,

ti = sup{Gi(x, y) : x ∈ S0, y ∈ Y },
is u.s.c.B. at each x ∈ S0.

Proof. First, it is easy to verify that the set M(x) is compact for each x ∈ S0.
Next, for each x ∈ S0, let {xk} ⊂ S0 be an arbitrary sequence such that xk → x,
and let {λk} ⊂ IRm such that λk ∈ M(xk) \M(x). From compactness of M(xk), by
passing to a subsequence if necessary, we assume that and λk → λ. We show that

λ ∈ M(x). (5)

To do this, for each k, let yk ∈ Y be a point such that Gi(x
k, yk) � λi � ti (see

definition of M in (4)). Again by passing to a subsequence if necessary, assume
that and yk → y. Since the functions Gi (i = 1, · · · ,m) are lower semicontinuous
on S0 × Y , it follows that, for each (i = 1, · · · ,m),

Gi(x, y) � lim
k→∞

Gi(x
k, yk) � lim

k→∞
λk
i = λi � ti,

which implies by definition that λ ∈ M(x).
Suppose that M is not u.s.c.B at x. Then, by definition, there exist an open set �

containing M(x), a sequence xk → x and a sequence λk such that λk ∈ M(xk)\�.
Thus, let λk → λ, then λ /∈ �, i.e., λ /∈ M(x), which is a contradiction to (5). �
LEMMA 3. Assume that the algorithm generates an infinite subsequence of par-
tition sets, {Sq}, such that

Sq+1 ⊂ Sq for all q, and lim
q→∞Sq =

∞⋂

q=1

Sq = {x∗}. (6)

Then

({x∗} × Y ) ∩ Z �= ∅. (7)

Proof. Suppose that (7) does not hold, i.e.,

{y ∈ IRp : Gi(x
∗, y) � 0 (i = 1, · · · ,m), y ∈ Y } = ∅. (8)



CONVERGENCE OF DUALITY BOUND METHOD 267

From (8) it follows that

{λ ∈ IRm : λi � 0, Gi(x
∗, y) � λi (i = 1, · · · ,m) for some y ∈ Y } = ∅.

(9)

Equation (9) implies that the two closed sets

T1 = {λ ∈ IRm : λi � 0 (i = 1, · · · ,m)} (10)

and

T2 = {λ ∈ IRm : Gi(x
∗, y) � λi (i = 1, · · · ,m) for some y ∈ Y } (11)

are disjointed. Note that T1 is convex and T2 is exactly the projection of the convex
set

{(y, λ) ∈ IRp+m : Gi(x
∗, y) − λi � 0 (i = 1, · · · ,m), y ∈ Y }

on IRm, and hence is also convex. Thus, T1 and T2 can be separated by a hyperplane
of the form

{λ ∈ IRm : λ0λ = 0} with some λ0 ∈ IRm (12)

such that

λ0λ � 0 for λ ∈ T1 and λ0λ > 0 for λ ∈ T2. (13)

Moreover, it must hold that

λ0 � 0, (14)

because otherwise, letting λ0
j < 0 and choosing

λ = (0, · · · , 0, λj = −1, 0, · · · , 0) ∈ T1,

we have λ0λ = −λ0
j > 0, which contradicts the property λ0λ � 0 for λ ∈ T1.

Next, let � be an open convex set containing the closed convex set T2 such that
T1 and � can still be separated by the hyperplane (12), i.e., we also have

λ0λ > 0 for λ ∈ �. (15)

Let M be the point-to-set mapping defined in (4). Then

M(x∗) = T2 ⊂ �.

Since M is u.s.c.B. at x∗ (by Lemma 2) and

lim
q→∞ Sq =

∞⋂

q=1

Sq = {x∗},
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it follows that there exists an index q∗ such that M(x) ⊂ � for all x ∈ Sq∗
.

Therefore, if for each x ∈ Sq∗
and each y ∈ Y , let λ(x, y) be a vector with

λi(x, y) = Gi(x, y) (i = 1, · · · ,m), then λ(x, y) ∈ M(x) ⊂ �. From (14)
and (15), it follows that

m∑

i=1

Gi(x, y)λ
0
i =

m∑

i=1

λi(x, y)λ
0
i = λ0λ(x, y) > 0 for x ∈ Sq∗

, y ∈ Y, (16)

which implies by Lemma 1 that µ(Sq∗
) = +∞, i.e., the partition set Sq∗

has to be
removed at Iteration q∗ of the algorithm. By this contradiction, the proof of (7) is
completed. �

Using the previous results we can now prove the convergence properties of the
algorithm.

THEOREM 1. Assume that the algorithm generates an infinite subsequence of
partition sets, {Sq}, such that

(i) Sq+1 ⊂ Sq for all q and limq→∞ Sq = ⋂∞
q=1 S

q = {x∗},
(ii) there is zero duality gap at x∗, i.e.,

inf{F(x∗, y) : Gi(x
∗, y) � 0 (i = 1, · · · ,m), y ∈ Y } =

= sup
λ�0

inf{F(x∗, y) +
m∑

i=1

Gi(x
∗, y)λi : y ∈ Y }. (17)

Then (x∗, y∗) is an optimal solution of Problem (P), where y∗ is an optimal solution
of the convex program

inf{F(x∗, y) : Gi(x
∗, y) � 0 (i = 1, · · · ,m), y ∈ Y }. (18)

Proof. For each q, let

wq(λ) = inf{F(x, y) +
m∑

i=1

Gi(x, y)λi : x ∈ Sq, y ∈ Y }, (19)

and let λq be an optimal solution of the problem sup{wq(λ) : λ � 0}, i.e., µ(Sq) =
wq(λ

q). Moreover, let

w∗(λ) = inf{F(x∗, y) +
m∑

i=1

Gi(x
∗, y)λi : y ∈ Y }. (20)

First, we show that w∗(λ) = supq wq(λ) for each λ. By definition, it is obvious that
w∗(λ) � supq wq(λ). On the other hand, for each q, let xq ∈ Sq , yq ∈ Y such that

wq(λ) = F(xq, yq ) +
m∑

i=1

Gi(x
q, yq )λi. (21)
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Then, from Assumption (i) and Lemma 3, it follows, by passing to subsequences if
necessary, that limq→∞(xq, yq) = (x∗, y∗) ∈ Z, where y∗ ∈ Y . This implies that

sup
q

wq(λ) = lim
q→∞ wq(λ) = F(x∗, y∗) +

m∑

i=1

Gi(x
∗, y∗)λi � w∗(λ). (22)

Thus, we have w∗(λ) = supq wq(λ).
Since the sequence {µ(Sq)} of lower bounds is nondecreasing (Lemma 1) and

bounded by the optimal value of Problem (P), its limit, µ∗, exists, and we have

µ∗ = limq→∞ µ(Sq) = limq→∞ wq(λ
q) = limq→∞ supλ�0 wq(λ)

= supq supλ�0 wq(λ) = supλ�0 supq wq(λ) = supλ�0 w
∗(λ). (23)

From Assumption (ii), it follows then

µ∗ = inf{F(x∗, y) : Gi(x
∗, y) � 0 (i = 1, · · · ,m), y ∈ Y }. (24)

Let y∗ be an optimal solution of this problem. Then, since µ∗ is a lower bound of
the optimal value of (P), it follows that (x∗, y∗) is an optimal solution of (P). �
REMARK 2. Since the problem

inf{F(x∗, y) : Gi(x
∗, y) � 0 (i = 1, · · · ,m), y ∈ Y }

is an ordinary convex program, Condition (ii) of Theorem 1 is fulfilled under well
known constraint qualifications (cf., e.g., Geoffrion, 1971; Mangasarian, 1969).

DEFINITION 2. A subsequence of partition sets {Sq} generated by the algorithm
is called to be ‘exhaustive’ if Sq+1 ⊂ Sq for all q and

lim
q→∞ Sq =

∞⋂

q=1

Sq = {x∗},

where x∗ is a point in IRn.
A partition process used within the algorithm is called exhaustive if every sub-

sequence of partition sets generated by the algorithm is exhaustive.
Using this concept of an exhaustive partition process, we obtain immediately

from Lemma 3 the following.

THEOREM 2. Assume that within the algorithm an exhaustive partition process
is used. Then the algorithm terminates after finitely many iterations if the feasible
set Z of Problem (P) is empty.

4. Conclusions

In this article we have shown that for partly convex programs, the decomposition
branch and bound algorithm using duality bounds has all convergence properties
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as any known branch and bound algorithm in global optimization. These properties
are stated in the theorems 1 and 2 under the usual assumptions that the partition
process is exhaustive in the space IRn and there is some constraint qualification for
each convex program obtained from Problem (P) by fixing x. Thus, we see that
all other assumptions discussed in Ben-Tal et al. (1993), Duer and Horst (1997)
and Thoai (1997) are avoidable. For the case p = 0, Problem (P) is a nonconvex
programming problem of the form

inf F(x)

s.t. Gi(x) � 0 (i = 1, · · · ,m)

x ∈ X.

(25)

The results in the Theorems 1 and 2 are stated by the following.

THEOREM 3. (i) If the algorithm generates an infinite subsequence of partition
sets, {Sq}, such that Sq+1 ⊂ Sq for all q and

lim
q→∞ Sq =

∞⋂

q=1

Sq = {x∗},

then x∗ is an optimal solution of Problem (25).
(ii) If Problem (25) has no feasible solution, and an exhaustive partition process

is used, then the algorithm terminates after finitely many iterations indicating this
fact.
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